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ABSTRACT 

In this paper, new adjusted biased regression estimators are proposed by using an adjustment factor based on 

signal-to-noise ratio (SNR). The theoretical results are applied to Liu-type estimators using the well known data of 

Portland Cement Data. The numerical results are in favor of the proposed adjusted estimators in the form of a smaller 

prediction error sum of squares (PRESS) criterion of the adjusted Liu type estimators compared to the original ones.      

The adjustment is also applied to the ordinary least squares estimators (OLSE) and other biased estimators such as ordinary 

ridge regression estimator (ORRE), and Liu estimator (LE). The best results are obtained for OLSE, ORRE, LE, and Liu 

type(1) estimators. It is concluded that this adjustment can be applied to any significantly regression estimator. 

KEYWORDS:  Adjusted Estimators, Liu Type Estimators, Ordinary Least Squares Estimator, Ordinary Ridge 

Regression Estimator, Prediction Error Sum of Squares, Signal to Noise Ratio 

1. INTRODUCTION 

Several estimators have been proposed to combat the multicollinearity problem. Some of these estimators are the 

Liu and Liu type estimators due to Liu (1993); and (2003) respectively. Liu estimator proposed by Liu (1993) received a 

great attention in the literature. (See Akdeniz and Kaciranlar (1995); Kaciranlar et al. (1999); Arslan and Billor (2000); 

Kaciranlar and Sakalliglu (2001); Torigoe and Ujiie (2006); Rong (2010); and Liu (2011). 

Consider the following linear regression model: 

εγ += zy ,                (1) 

Where y is an (nx1) vector of standardized response, z is an (nxp) matrix of standardized regressors, γ  is a (px1) 

vector of unknown parameters, and ε  is an (nx1) vector of errors such that ε ~ ( )IN 2,0 σ . Let γ̂  be the ordinary least 

squares estimator (OLSE) of γ , defined as, 

( ) yzzz ′′= −1γ̂ ,                (2) 

which is the best linear unbiased estimator (BLUE) of γ . 

In the case of exiting near multcollinearity among regressors, the characteristic BLUE of OLSE will be of little 

comfort. The variance of OLSE may be very large, so its accuracy will be reduced. Instead of using OLSE, various biased 

regression estimators are considered. A popular numerical method to deal with the multicollinearity problem is the 
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ordinary ridge regression estimator (ORRE) proposed by Hoerl and Kennard (1970), which is defined as follows: 

( ) yzkIzzk ′+′= −1γ̂ ,               (3) 

where k is a biasing ridge parameter. The disadvantage of ORRE is that a value of the ridge parameter k may be 

not large enough to reduce the condition number of the matrix ( ) 1−
+′ kIzz when zz′ is very ill-conditioned. To 

overcome this problem, Liu (1993) proposed Liu estimator which is based on the OLSE,γ̂ . As a result, it is found that Liu 

estimator performs poorly and sometimes gives misleading information. To overcome this problwem, Liu (2003) proposed 

a new Liu-type estimator which depends on any estimator. 

After Liu (2003) introduced his Liu-type estimator, various estimators are proposed based on this estimator. 

Combining Liu and Liu-type estimators with other biased and unbiased estimators, improving and adjusting Liu and      

Liue-type estimators are examples for these proposals.(See Kaciranlar et al. (1999); Alheety and Kibria (2009); Li and 

Yang (2010); Liu (2011); Liu and Gao (2011); Li and Yang (2011); Gruber (2012); Liu et al. (2013), etc...).   

The purpose of this paper is to introduce new adjusted Liu-type estimators, and special cases of them. The 

adjustment based on the idea of signal-to-noise ratio (SNR).  

This paper is organized as follows. Section (2) considers Liu type estimators. Section (3) introduces the 

methodology of the proposed estimators. Section (4) present numerical results based on a simulation study, and a real data 

based on Cement Portland data. The conclusions of this paper are given in section (5).  

2. LIU-TYPE REGRESSION ESTIMATORS 

Liu (1993) proposed a new biased estimator as an alternative to the ORRE by combining the Stein (1956) 

estimator with the ORRE. This estimator is called "Liu estimator" by Akdeniz and Kaciranlar (1995). Liu estimator (LE) is 

defined as follows: 

( ) ( )γγ ˆˆ
1

dyzIzzd +′+′= −
,              (4) 

where γ̂  is the OLSE of γ , and ( )∞∞−∈ ,d  is a an arbitrary constant parameter which can used to improve 

the fit and the statistical properties. The advantage of the Liu estimator over the ORRE, kγ̂ , in (3) is that Liu estimator, 

dγ̂ , is a linear function of d, so it is easy to select an optimal value of d. Akdeniz and Ozturk (2005) derived the 

distribution density function of the stochastic parameter d by assuming normality.  

The LE, dγ̂  in (4) is based on OLSE (γ̂ ) in (2), so its performance is poor and sometimes gives misleading 

results. Liu (2003) proposed a new Liu-type estimator (LTE) to overcome the problem of LE as follows, 

( ) ( )*1
, ˆˆ γγ dyzkIzzdk −′+′= −

              (5) 

where k>0 is a biasing parameter which can be used to control the condition number of the matrix,( )kIzz +′ ; 
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( )∞∞−∈ ,d  is a an arbitrary constant parameter which can used to improve the fit and the statistical properties; and *γ̂
can be any estimator of γ .  

Liu (2003) considered two choices of *γ̂ , the first is the OLSE and the second is the ORRE, defined as LTE1 and 

LTE2, respectively as follows: 

LTE1 : ( ) ( ) ( )[ ] yzzzkIzzdkIzzdk ′′+′−+′= −−− 111
,γ̂ .                         (6) 

LTE2 : ( ) ( )[ ] yzkIzzdkIzzdk ′+′−+′= −− 21
,γ̂ .            (7) 

Sakalliglu and Kaciranlar (2008) proposed a new biased estimator called the k-d class estimator, defined as 

follows: 

( ) ( )kdk dyzIzz γγ ˆˆ 1
, +′+′= −

,              (8) 

where kγ̂  is the ORRE of γ . The above k-d class estimator is a special case of Liu-type estimator defined in (5). 

Sakalliglu and Kaciranlar (2008) compared their estimator in (8) with the OLSE and the two Liu type estimators, LTE1 

and LTE2. In this case, The k-d class estimator defined in (8) can be defined as LTE3 as follows: 

LTE3 : ( ) ( ) ( )[ ] yzkIzzIzzdIzzdk ′+′+′++′= −−− 111
,γ̂ .           (9) 

Rong (2010) used the above Liu-type estimators LTE1, LTE2, and LTE3 in his proposal of adjusted estimators. 

He based the adjustment on a general formula for the three estimators and selected the adjusted factor which minimizes the 

PRESS. In this work, we propose to adjust Liu type estimators by using a different methodology based on a signal to noise 

ratio (SNR). It is concluded that our adjustment can be applied to any other biased or unbiased estimator. 

From the theory and practical point of view, comparing biased estimators is based on the mean squared error 

(MSE) scalar or matrix criterion (MMSE). (See Sakallioglu et al. (2001); Akdeniz and Erol (2003); Sakalliglu and 

Kaciranlar (2008)).  

All the comparisons, which based on MSE, showed that the best estimator depends on the unknown parameters, 

the variance of the error term in the linear regression model, and the value of the biasing or shrinkage parameter in biased 

or shrinkage estimator. Sakalliglu and Kaciranlar (2008) proved that the k-d class estimators has superior properties over 

the OLSE, ORRE, and the Liu type estimators according to MMSE and MSE.  

 In this work, it is found that LTE3 is superior over the other estimators according to PRESS criterion. 

3. THE METHODOLOGY  

Definition 

The estimator Aγ̂  is called an adjusted estimator of the estimatorγ̂ , if A is a diagonal matrix such that, 

γγ ˆˆ AA = ,              (10) 
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Where γ̂  is any estimator of the parameter vector γ , and A=diag(a11, a22,…,app), such that (a11, a22,…,app)∊R are 

p scalars. 

3.1. The Signal- to-Noise Ratio (SNR) 

Any value obtained by a measurement contains two components: the first contains the information of interest, 

known as the signal, and the other consists of random errors, or noise. The random errors are unwanted because they 

diminish the accuracy and precision of the measurement. 

There have been a large number of definitions of the signal-to-noise ratio (SNR). One of the most important 

definitions is the one used by Taguchi (1987) in quality engineering. Taguchi (1987) introduced the following SNR for 

evaluating the performance of the linear regression model in (1), as follows: 

2

2

o
σ
γ=SNR ,              (11) 

where γ  is an unknown regression parameter, and 
o

σ  is the standard deviation of the noise or the error term of 

the model. 

An alternative definition of SNR is the reciprocal of the coefficient of variation, i.e., the ratio of mean to standard 

deviation of a signal or measurement as follows: 

σ
µ=SNR ,              (12) 

where µ is the signal mean or expected value and σ is the standard deviation of the noise or an estimator. 

3.2. An Algorithm for the Proposed Adjusted Estimators 

SNR is similar to testing whether of γ , in the linear regression model in (1), is significantly different from zero 

which can be defined as follows: 

( )γ
σ
γ

γ

ˆ
ˆ

ˆ

ˆ

tSNR == ,              (13) 

where ( )γ̂t  is a t-statistic of testing the significance of γ , and γσ ˆˆ  is the standard error of γ̂ . Thus SNR is 

considered large, that is representing a signal if, for example, SNR > 3 for a confidence level of 99.9%. This implies an 

existence of a signal over and above noise. It can be concluded that: 

( ) 3ˆ
ˆ

ˆ

ˆ

>== γ
σ
γ

γ

tSNR .             (14) 

Then number three can be used as a bench mark, such that SNR should not be less than three. If SNR is less than 

3, then the data implies some noise.  
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From Eq.(12), the estimator γ̂  can be defined as follows: 

( ) γγ σγσγ ˆˆ ˆ3ˆˆˆ =⋅= t .             (15) 

An adjusted estimator of γ̂  can be obtained as follows: 

A
AAA γσγγ ˆˆ3ˆˆ =⋅= ,             (16) 

where A= diag(a1,a2,…..,ap) is a diagonal matrix defined as an adjusted factor of γ̂ , and a1,a2,…..,ap∈R are 

scalars. The adjusted factor A can be found as: 

A

AA γ
σ γ

ˆ
ˆ.3 ˆ= .             (17) 

The following simple iterative algorithm will be used in finding the adjusted estimator Aγ̂ : 

• Find the initial adjusted factor
o

A :   
oo

o

γσ γ ˆ/ˆ3 ˆ=A , find the adjusted parameter1̂γ :  
o

oo γσγγ ˆ1 ˆ3ˆˆ == A , and 

find 

2

11 ˆˆ
o

γγ −=D , 

where 
o

γσ ˆˆ is the standard error of 
o

γ̂ , o
γ̂  is the initial estimated parameter vector before adjustment, and 

2⋅

denotes the squared norm. 

• Find the first adjusted factor1A :   1ˆ1 ˆ/ˆ3
1

γσ γ=A , find the adjusted parameter2γ̂ :  
1ˆ112 ˆ3ˆˆ γσγγ == A , and 

find 

2

122 ˆˆ γγ −=D ,  

where 
1ˆ

ˆγσ is the standard error of 1̂γ , and 1̂γ  is the estimated parameter vector as defined in step (1). 

• Find the second adjusted factor2A :   2ˆ2 ˆ/ˆ3
2

γσ γ=A , 

find the adjusted parameter3γ̂ :  
2ˆ223 ˆ3ˆˆ γσγγ == A , and find 

2

233 ˆˆ γγ −=D , 

where 
2

ˆγσ is the standard error of 2γ̂ , and 2γ̂  is the estimated parameter vector as defined in step (2). 

• Repeat Finding the adjusted factor and the adjusted parameter estimator m times mA , and mγ̂ , respectively. Also, 

the squared norm, mD  as follows:  
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mm m
A γσ γ ˆ/ˆ3= ,   and 

mmmm A γσγγ ˆ3ˆˆ == ,  

Such that 0ˆˆ 2

1 ≈−= −mmmD γγ  

where 
mγσ ˆˆ is the standard error of mγ̂ , and mγ̂  is the estimated parameter vector as defined in step (m). 

• Finally take mA γγ ˆˆ =  as the adjusted estimated parameter vector. 

The adjustment will be applied to the Liu type estimators and also to their special cases, OLSE and ORRE for 

comparison. 

3.3. The Prediction Error Sum of Squares (PRESS) 

The prediction error sum of squares (PRESS) statistic, proposed by Allen (1974), is used to compare different 

models. The PRESS statistic does not depend on some particular model parameters, but on the model itself. The prediction 

error sum of squares (PRESS) statistic is a form of cross-validation used in regression analysis to provide a summary 

measure of the fit of a model to a sample of observations that were not themselves used to estimate the model.                

(See Allen (1971; 1974)).  

In this paper PRESS is used to compare the different proposed estimators with other unbiased and biased 

estimators as will be shown in the following section. PRESS is simply calculated as the sums of squares of the prediction 

residuals for those observations as follows: 

( ) ( )∑∑
=

−
=

− ′−=−=
n

i
iii

n

i
iii zyyyPRESS

1

2

1

2
, ˆˆ γ ,          (18) 

where iiy −,ˆ  is denotes the fitted value i without the ith observation, and ii −,γ̂  is any estimator of iγ  after 

discarding the ith observation. 

The following estimators will be considered in this work: 

• The OLSE: i−γ̂ (OLSE) = ( ) ( )iiii yzyZzzZZ −′′−′ −1
 

• The ORRE: i−γ̂ (ORRE) = ( ) ( )iiii yzyZzzkIZZ −′′−+′ −1
 

• The LTE1: i−γ̂ (LTE1) = ( ) ( ) ( )[ ]( )iiiiiiii yzyZzzZZzzkIZZdzzkIZZ −′′−′′−+′−′−+′ −−− 111
 

• The LTE2: i−γ̂ (LTE2) = ( ) ( )[ ]( )iiiiii yzyZzzkIZZdzzkIZZ −′′−+′−′−+′ −− 21
 

• The LTE3: i−γ̂ (LTE3) = ( ) ( ) ( )[ ]( )iiiiiiii yzyZzzkIZZzzIZZdzzIZZ −′′−+′′−+′+′−+′ −−− 111
 

Also, the adjusted versions of these estimators will be considered as follows: 

• The adjusted OLSE: i−γ̂ (AOLSE) =A1
( ) ( )iiii yzyZzzZZ −′′−′ −1
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• The adjusted ORRE: i−γ̂ (AORRE) =A2
( ) ( )iiii yzyZzzkIZZ −′′−+′ −1

 

• The adjusted LTE1: i−γ̂ (ALTE1) =A3 ( ) ( ) ( )[ ]( )iiiiiiii yzyZzzZZzzkIZZdzzkIZZ −′′−′′−+′−′−+′ −−− 111  

• The adjusted LTE2: i−γ̂ (ALTE2) =A4
( ) ( )[ ]( )iiiiii yzyZzzkIZZdzzkIZZ −′′−+′−′−+′ −− 21

 

• The adjusted LTE3: i−γ̂ (ALTE3) =A5
( ) ( ) ( )[ ]( )iiiiiiii yzyZzzkIZZzzIZZdzzIZZ −′′−+′′−+′+′−+′ −−− 111

 

The performance of these estimators will be shown and compared according the PRESS for the estimator. 

4. NUMERICAL RESULTS 

To investigate our proposed estimators discussed in this paper, the well-known dataset on Portland cement due to 

Woods et al (1932) is used. These data come from an experiment investigation of the heat evolved during the setting and 

hardening of Portland cements of varied composition, and the dependence of this heat on the percentages of four 

components in the clinkers from which the cement was produced. A data frame with 13 observations on the following                 

5 variables:  

X1: Tricalcium Aluminate. 

X2: Tricalcium Silicate. 

X3: Tetracalcium Aluminoferrite. 

X4: Dicalcium Silicate. 

It is found that the condition number of the matrix X is about 6051.419, which means that the design matrix is    

ill-conditioned, and the OLSE is no longer a good estimator using the MSE criterion. The theoretical results of this paper 

are well supported by this dataset as will be shown in the following sections. 

In this work, the estimators will be compared according to PRESS, the best estimator is the one which has smaller 

value of PRESS. Also, the relative improvement (RI) of the adjusted estimator compared ( )γ̂A to the original estimator 

( )γ̂  will be computed as follows: 

( )
γ

γγγγ
ˆ of 

ˆA of ˆ of ˆ ,ˆ 
PRESS

PRESSPRESS
ARI

−=  

In this paper, it is shown that the optimal biasing factors are d= -0.1 and k=0.2. The repetition of the adjustment is 

stopped for all biased estimator at m=3 except for OLSE at m=1. In Table (1), and Table (2) it is found that the proposed 

adjustment factor for the OLSE is (0.253488, 0.12470, 0.63085, 0.255449) and the PRESS before adjustment is 98.5491 

but is equal 17.00863 after using the adjustment factor with a higher relative improvement of 82.74%. (See Table (3)).      

The proposed adjustment factor for the ORRE is (0.25339, 0.124523, 0.631725, 0.255188) and the PRESS before 

adjustment is 98.4282 but is equal 16.96145 after using the adjustment fact with high relative improvement of 73.62%.    

(See Table (3)). The proposed adjustment factor for the Liu estimator is (0.252766, 0.123185, 0.63443, 0.252968) and the 

PRESS before adjustment is 98.4572 but is equal 16.9325 after using the adjustment factor with high relative improvement 
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of 82.70%.(See Table (3)). The proposed factor adjustment for the LTE1 is (0.253365, 0.124567, 0.631287, 0.255293) and 

the PRESS before adjustment is 98.5491 but is equal 16.99768 after using the adjustment factor with a relative 

improvement of 82.74%(See Table (3)). The proposed adjustment factor for the LTE2 is (0.857276, 0.873291, 1.121333, 

1.18959) and the PRESS before adjustment is 88.30704 but is equal 54.8621 after using the adjustment factor with a 

relative improvement of 37.94%. (See Table (3)). The proposed adjustment factor for the LTE3 is (0.849331, 0.872642, 

1.122145, 1.189543) and the PRESS before adjustment is 89.58145 but is equal 54.79164 after using the adjustment factor 

with a higher relative improvement of 38.84%.(See Table (3)). These results are obtained using R language and "lrmest" 

package and Mini Tab.  

Table 1: Parameter Estimates, Adjusted Parameter Estimates, PRESS Values for the Ordinary Least Squares 
Estimators (OLSE) Using Portland Cement Data (PCD) Due to Woods et al. (1932) 

Parameter Estimates OLSE Adjusted OLSE ORRE Adjusted ORRE LE Adjusted LE 
1γ̂  

2γ̂  

3γ̂  

4γ̂  

2.1930 
1.15333 
0.7585 
0.48632 

0.5559 
0.14382 
0.4785 
0.12423 

2.1903 
1.1540 
0.7565 
0.4867 

0.5550 
0.1437 
0.4779 
0.1242 

2.1779 
1.5680 
0.7476 
0.4886 

0.5505 
0.1425 
0.4743 
0.1236 

PRESS 98.5491 17.00863 98.4282 16.96145 97.8528 16.9325 
 

Table 2: Parameter Estimates, Adjusted Parameter Estimates, PRESS Values for the Three Liu Type Estimators, 
LTE1, LTE2, and LTE3 Using Portland Cement Data (PCD) Due to Woods et al. (1932) 

Parameter Estimates LTE1 Adjusted LTE1 LTE2 Adjusted LTE2 LTE3 Adjusted 
LTE3 

1γ̂  

2γ̂  

3γ̂  

4γ̂  

2.1917 
1.1536 
0.7575 
0.4865 

0.5553 
0.1437 
0.4782 
0.1242 

2.0204 
1.7118 
0.9000 
0.8703 

1.73204 
1.49490 
1.00920 
1.03530 

2.0409 
1.7282 
0.9063 
0.8779 

1.7334 
1.5081 
1.0170 
1.0443 

PRESS 98.4926 16.99768 88.30704 54.80621 89.58145 54.79164 
 

Table 3: The Relative Improvement (RI) of PRESS Values for the Different Estimators before and after 
Adjustment, OLSE, ORRE, LE, and the Three Liu Type Estimators, LTE1, LTE2, and LTE3 Using Portland 

Cement Data (PCD) Due to Woods et al. (1932) 

PRESS for Different 
Estimators 

OLSE ORRE LE LTE1 LTE2 LTE3 

PRESS before adjustment 98.5491 98.4282 97.8528 98.4926 88.30704 89.58145 
PRESS after adjustment 17.00863 16.96145 16.9325 16.99768 54.80621 54.79164 
RI 82.74% 73.62% 82.70% 82.74% 37.94% 38.84% 
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Figure 1: PRESS for Different Estimators (OLSE, ORRE, LE, LTE1, LTE2, and LTE3)  
Before and after Adjustment 

 

Figure 2: Relative Improvement of PRESS for Different Estimators  
(OLSE, ORRE, LE, LTE1, LTE2, and LTE3) 

 
5. CONCLUSIONS 

In this paper, we propose new adjusted biased regression estimators by using an adjustment factor based on 

signal-to-noise ratio (SNR) and an iterative algorithm. The theoretical results are applied to the most recently biased 

estimators that are Liu-type estimators using the well known multicollinear data of Portland Cement Data due to Wood et 

al. (1932). The numerical results are in favor of our proposed adjusted estimators in the form of a smaller prediction error 

sum of squares (PRESS) criterion of the adjusted Liu type estimators compared to the original ones. The adjustment is also 

applied to the ordinary least squares estimators (OLSE) and other biased estimators such as ordinary ridge regression 

estimator (ORRE), and Liu estimator (LE). The best results are obtained for OLSE, ORRE, LE, and LET1 estimators in the 

form of large relative improvement of the adjusted estimator compared to the original estimator. It can be concluded that 

this adjustment can be applied to any significantly regression estimator. More work is needed in the area of adjusted 

regression estimators using different methodology. 
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